BIOMECHANICS OF JAVELIN THROWING

Frank Lehmann
Biomechanics of javelin throwing

PD Dr. Frank Lehmann
3rd world javelin conference;
Kuortane 13.11.2014

Structure of the presentation

1. Preliminary remarks
2. Selected biomechanical aspects of javelin throw
3. Motion technical parameters of javelin throw
4. Motion analysis of the javelin movement at the IAT
5. Selected results of the motion analysis
6. Summary
1. Preliminary remarks

- About the Institute for Applied Training Science
- About my own person
- Our training scientific support and counselling contains javelin and discus throw; shot put and decathlon/heptathlon; all German top-athletes in this events are involved actually - very close cooperation with their coaches.

First presentation (today): selected biomechanical aspects of the javelin throw based on our system of movement analysis (special database). This is the initial and final point of our training scientific support and counselling.

Second presentation (tomorrow): Presentation of our system of training scientific support and counselling, actually used in javelin throw (similar in discus throw and shot put).

Important question today: What characterizes the top-performances?
According to a physical law

\[
D = \frac{v_0^2}{g} \cos \alpha_v \left[\sin \alpha_v + \sqrt{\sin^2 \alpha_v + \frac{2h_0}{v_0^2}} \right] \pm \Delta L
\]

- **D**: throwing distance
- **\(v_0\)**: release speed
- **\(\alpha_v\)**: angle of release (direction of \(v_0\))
- **\(h_0\)**: height of release
- **\(g\)**: acceleration of gravity
- **\(\pm \Delta L\)**: difference in the throwing distance, caused by aerodynamics, air resistance, javelins characteristics etc.

2. Selected biomechanical aspects

Several methods of instant measurement of the release speed in javelin throw

- Reflecting band behind the upper end of the javelin’s grip
- Two LASER light barriers in a distance of 1 meter

Disadvantage of this method: Two-dimensional measurement
2. Selected biomechanical aspects

Own results (see figures):
Confirmation of all results getting up today: very close correlation between release speed and throwing distance both in men and women.

Note: measured by LASER, female: n = 826; male n = 864

Frank Lehmann
Biomechanics of javelin throwing
12.11.2014

2. Selected biomechanical aspects

Release speed v_r is the result of the action of force (it equates to the acceleration of the javelin). That means: The release speed is the integral of the course of the javelin's acceleration over the time during the javelin's movement.

Release speed $v_r = \text{sum of the velocity of the javelin at the beginning of the main acceleration phase } v_o \text{ and the increase of velocity during the main acceleration phase } \Delta v \text{ (area under the acceleration curve)}$

Touch down of the left leg

Release

Note: the main acceleration begins before the touch down, but we define the beginning of the main acceleration in this way because of the used measurements.

Frank Lehmann
Biomechanics of javelin throwing
12.11.2014
2. Selected biomechanical aspects

Analysis of top performances - women

<table>
<thead>
<tr>
<th>Throwing distance (m)</th>
<th>Javelin's velocity at the touch down of the left leg [m/s]</th>
<th>Increase of velocity during the main acceleration phase [m/s]</th>
<th>Release speed [m/s]</th>
<th>Percentage of the increase of velocity during the main acceleration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean/STD > 65,75m (n = 5)</td>
<td>68,62 ± 2,42</td>
<td>8,5 ± 0,4</td>
<td>17,0 ± 0,4</td>
<td>25,5 ± 0,2</td>
</tr>
<tr>
<td>Mean/STD 60-65m (n = 15)</td>
<td>61,68 ± 1,60</td>
<td>7,6 ± 0,6</td>
<td>15,5 ± 0,8</td>
<td>24,1 ± 0,8</td>
</tr>
<tr>
<td>Mean/STD 55-60m (n = 16)</td>
<td>57,80 ± 1,13</td>
<td>7,9 ± 0,71</td>
<td>15,7 ± 0,6</td>
<td>23,6 ± 0,7</td>
</tr>
</tbody>
</table>

Differences between the groups 55-60m und 60-65m: higher increase of velocity during the main acceleration exclusively!

The significant differences of the throwing distances and the release speed between the group 60-65m and the group above 65,75m are caused by significant differences of the javelin’s velocities at the touch down of the left leg (p = 0.014), while no significant differences in the increases of the javelin’s velocities during the main acceleration were found (p = 0.387).

Analysis of top performances - men

<table>
<thead>
<tr>
<th>Throwing distance (m)</th>
<th>Javelin's velocity at the touch down of the left leg [m/s]</th>
<th>Increase of velocity during the main acceleration phase [m/s]</th>
<th>Release speed [m/s]</th>
<th>Percentage of the increase of velocity during the main acceleration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean/STD > 88m (n = 5)</td>
<td>90,76 ± 4,39</td>
<td>9,7 ± 0,2</td>
<td>30,5 ± 1,1</td>
<td>30,2 ± 1,2</td>
</tr>
<tr>
<td>Mean/STD 81-86,50m (n = 20)</td>
<td>83,17 ± 1,51</td>
<td>9,3 ± 1,1</td>
<td>19,5 ± 1,0</td>
<td>28,8 ± 0,5</td>
</tr>
<tr>
<td>Mean/STD 76-81m (n = 19)</td>
<td>78,61 ± 1,84</td>
<td>9,4 ± 1,1</td>
<td>18,5 ± 1,1</td>
<td>27,9 ± 0,6</td>
</tr>
</tbody>
</table>

Similar to the women: The significant differences between the group 76-81m and 81-86,50m are caused by the increase of the javelin’s velocity exclusively!

The significant differences between the groups 81-86,50m and above 88m are caused by significant differences in both velocities (velocity at the beginning and the increase of velocity during the main acceleration)!
2. Selected biomechanical aspects

It means:

Ca. 1/3 of the release speed is generated by pre-acceleration of the whole system (thrower/javelin) up to the touchdown of the left leg (beginning of the main acceleration phase).

Ca. 2/3 of the release speed are generated by the acceleration of the javelin during the main acceleration phase (touch down of the left leg to release).

There is no continuous development (cross-sectional comparison). Top performances are characterized by higher velocities of the javelin at the beginning of the main acceleration and higher increases of velocity during the main acceleration (only men).

Very important is the increase of the javelin's velocity up to the touchdown of the left leg in an effective way (not effective: to accelerate only the javelin too early).

Two important aspects in javelin throw:

- To generate a high release speed.
- To transform a high release speed in throwing distance effectively.

We need an extensive motion analysis, in order to

- determine the deciding parameters of the release speed and the quality of the release,
- formulate requirements, depending on the throwing distance,
- identify individual reserves at every thrower,
- check the effect of several interventions in the training.
3. Motion technical parameters

<table>
<thead>
<tr>
<th>Important movement technique parameters</th>
<th>quality of release</th>
</tr>
</thead>
<tbody>
<tr>
<td>release speed</td>
<td></td>
</tr>
<tr>
<td>running-up</td>
<td>angle of release</td>
</tr>
<tr>
<td>changeover (running-up → beginning of main acceleration)</td>
<td>angle of attitude</td>
</tr>
<tr>
<td>activity of the support leg</td>
<td>difference between the angle of attitude and the angle of release at release (so called uncorrected angle of attack)</td>
</tr>
<tr>
<td>delay of throw</td>
<td>angle of yaw</td>
</tr>
<tr>
<td>activity of the brace leg</td>
<td></td>
</tr>
<tr>
<td>creation of pre-tension 1 (trunk/shoulder)</td>
<td></td>
</tr>
<tr>
<td>creation of pre-tension 2 (shoulder/throwing arm)</td>
<td></td>
</tr>
<tr>
<td>main acceleration of the javelin</td>
<td></td>
</tr>
</tbody>
</table>

Note: We use special terms in Germany: the delay of throw means: to hold back the throwing arm and shoulder before the main acceleration begins.

4. Motion analysis of the javelin movement at the IAT

The kinematic motion analysis is done both at important competitions and at all diagnostics.

It is executed as an three-dimensional analysis of the video-picture (50 Hz, 50 half frames; both cameras are hardware-synchronized) at every measure. One camera stands at the side (90 degree to the throwing direction), one camera behind the thrower (in throwing direction, at the edge of the javelin throw area- outside)

The results of the motion analysis are integrated in a special database including several figures, videos and picture sequences (MIS „Javelin“).

Our database contains actually: C.a. 130 female throwers (680 attempts) und 140 male throwers (740 attempts) with throwing distances from 29,50m to 72,28m (women and female youth) and from 45,50m to 98,48m (men and male youth). It means both current javelin world records are included.

This three-dimensional motion analysis is an important base and part of our work (biomechanical and training scientific support) in Germany.
Motion analysis: three-dimensional analysis of the video motion (DRENG, IAT, 2004)

Calibration → capture the spatial coordinates

Because of the rotated side camera during recording an additional calibration work is necessary → every frame we analyzed must be calibrated.

After capturing we must transform the real space coordinates on the javelin throw area (we call it transformation of the zero-point).

4. Motion analysis of the javelin movement at the IAT

The base of our kinematic analysis is the javelin’s movement with seven selected poses:

- Take-off of the third last step
- Take-off to the cross-over stride
- Touch-down after the cross-over stride 0.16s later
- Touch-down of the brace leg 0.06s later
- Javelin’s release

Captured are: all joints (points) and the javelin (end, upper edge of the grip and top) at these poses, grip of the javelin (upper edge), left and right shoulder, left and right hip and the elbow and the wrist of the throwing arm from pose 1 to 0.04s after pose 7.
4. Motion analysis of the javelin movement at the IAT

Analysis of the release parameters (to estimate the quality of release)

- Before: check of the accuracy of the calibration, the error of measurement should be smaller than 1%

Angle of release
Angle of attitude
Release speed

Quotient 3D-javelins ways (upper edge of the grip) from the release to the picture 0,04s later and the time (0,04s);
angle between the direction of this way and the horizontal plane
angle between the longitudinal axis of the javelin and the horizontal plane
angle between the direction of the javelin's way and the longitudinal axis of the javelin (yz-plane; rear-view)

Structure of the database

Menu of the database MIS „Javelin“

<table>
<thead>
<tr>
<th>Figure/course of the C.O.G.-velocities and forces</th>
<th>Figure/course of the 7 poses (K., hip, and xy-planes)</th>
<th>Figure/course of the 7 poses (K., hip, and xy-planes)</th>
<th>Course of the torques</th>
<th>Video side and rear camera (including the possibility of comparison of two movies)</th>
<th>Verbal evaluation of the movement (including hints for the training)</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Später</th>
<th>Datum</th>
<th>Wert</th>
</tr>
</thead>
<tbody>
<tr>
<td>Julia, Linda</td>
<td>07.07.2013</td>
<td>400</td>
<td>6</td>
<td>20</td>
<td>10</td>
<td>50</td>
<td>10</td>
<td>20</td>
<td>10</td>
<td>50</td>
<td>10</td>
<td>20</td>
<td>10</td>
<td>50</td>
<td>10</td>
<td>20</td>
<td>10</td>
<td>50</td>
<td>10</td>
</tr>
<tr>
<td>Hofmeyr, Christine</td>
<td>07.07.2013</td>
<td>400</td>
<td>6</td>
<td>20</td>
<td>10</td>
<td>50</td>
<td>10</td>
<td>20</td>
<td>10</td>
<td>50</td>
<td>10</td>
<td>20</td>
<td>10</td>
<td>50</td>
<td>10</td>
<td>20</td>
<td>10</td>
<td>50</td>
<td>10</td>
</tr>
<tr>
<td>Huter, Katharina</td>
<td>07.07.2013</td>
<td>400</td>
<td>6</td>
<td>20</td>
<td>10</td>
<td>50</td>
<td>10</td>
<td>20</td>
<td>10</td>
<td>50</td>
<td>10</td>
<td>20</td>
<td>10</td>
<td>50</td>
<td>10</td>
<td>20</td>
<td>10</td>
<td>50</td>
<td>10</td>
</tr>
<tr>
<td>Krug, Marlene</td>
<td>07.07.2013</td>
<td>400</td>
<td>6</td>
<td>20</td>
<td>10</td>
<td>50</td>
<td>10</td>
<td>20</td>
<td>10</td>
<td>50</td>
<td>10</td>
<td>20</td>
<td>10</td>
<td>50</td>
<td>10</td>
<td>20</td>
<td>10</td>
<td>50</td>
<td>10</td>
</tr>
<tr>
<td>Kuentz, Susanne</td>
<td>07.07.2013</td>
<td>400</td>
<td>6</td>
<td>20</td>
<td>10</td>
<td>50</td>
<td>10</td>
<td>20</td>
<td>10</td>
<td>50</td>
<td>10</td>
<td>20</td>
<td>10</td>
<td>50</td>
<td>10</td>
<td>20</td>
<td>10</td>
<td>50</td>
<td>10</td>
</tr>
<tr>
<td>Schöne, Claudia</td>
<td>07.07.2013</td>
<td>400</td>
<td>6</td>
<td>20</td>
<td>10</td>
<td>50</td>
<td>10</td>
<td>20</td>
<td>10</td>
<td>50</td>
<td>10</td>
<td>20</td>
<td>10</td>
<td>50</td>
<td>10</td>
<td>20</td>
<td>10</td>
<td>50</td>
<td>10</td>
</tr>
<tr>
<td>Kreutz, Patricia</td>
<td>07.07.2013</td>
<td>400</td>
<td>6</td>
<td>20</td>
<td>10</td>
<td>50</td>
<td>10</td>
<td>20</td>
<td>10</td>
<td>50</td>
<td>10</td>
<td>20</td>
<td>10</td>
<td>50</td>
<td>10</td>
<td>20</td>
<td>10</td>
<td>50</td>
<td>10</td>
</tr>
<tr>
<td>Fottmann, Esther</td>
<td>07.07.2013</td>
<td>400</td>
<td>6</td>
<td>20</td>
<td>10</td>
<td>50</td>
<td>10</td>
<td>20</td>
<td>10</td>
<td>50</td>
<td>10</td>
<td>20</td>
<td>10</td>
<td>50</td>
<td>10</td>
<td>20</td>
<td>10</td>
<td>50</td>
<td>10</td>
</tr>
<tr>
<td>Hofmeyer, Linda</td>
<td>07.07.2013</td>
<td>400</td>
<td>6</td>
<td>20</td>
<td>10</td>
<td>50</td>
<td>10</td>
<td>20</td>
<td>10</td>
<td>50</td>
<td>10</td>
<td>20</td>
<td>10</td>
<td>50</td>
<td>10</td>
<td>20</td>
<td>10</td>
<td>50</td>
<td>10</td>
</tr>
</tbody>
</table>
5. Selected results of the motion analysis

Methodology

According to our topic (requirements of 70 and 90 meters) some selected results of the motion analysis will be presented.

Therefore all javelin throwers in our database are separated into three male and three female groups. In the following analysis only the individual longest throws (longest throwing distance) are included.

Women:
- throwing distance 55-60m (n = 16; mean/STD: 57,80 ± 1,13)
- throwing distance 60-65m (n = 15; mean/STD: 61,68 ± 1,60)
- throwing distance above 65,75m (n = 5; mean/STD: 68,82 ± 2,42)

Men:
- throwing distance 75-81m (n = 19; mean/STD: 78,61 ± 1,84)
- throwing distance 81-86,50m (n = 20; mean/STD: 83,17 ± 1,51)
- throwing distance above 88m (n = 5; mean/STD: 90,76 ± 4,39)

What are the main differences between this groups?

5. Selected results of the motion analysis

Course of the CG-velocities and -ways — women

→ No differences between 55-60m and 60-65m;
→ Significant higher velocities up to pose 5 (TD brace leg); significant higher velocity-reduction in the braking phase and smaller CG-ways between pose 4 and 5 in the top-athletes (>88,75m)

Frank Lehmann
Biomechanics of javelin throwing
12.11.2014
5. Selected results of the motion analysis

Course of the CG-velocities and -ways — men

- No differences between 75-81m and 81-85,50m except the way between pose 4 and 5
- Significant higher velocities till pose 5 (TD brace leg); significant higher velocity-reduction in the braking phase and smaller CG-ways between pose 4 and 5 at the top-athletes (>88m)

Database - example for an individual analysis

Deficits:
- loss of CG-velocity during impulse stride;
- loss of CG-velocity after touch down support leg during delivery stride
- to small reduction of velocity during braking phase (TD brace leg to release)
- increase of the CG-way in second phase of the delivery stride

→ Tasks to change in training
5. Selected results of the motion analysis

Effective activity of the support leg (requirements):
- No loss of CG-velocity after the touch-down of the support leg;
- No loss of CG-velocity in the second half of the delivery stride (effective pressure from the right foot);
- Pressure from the right foot to the right hip (hit the hip) without knee-extension (right knee must go to the ground);
- If the knee is extended the pressure goes to the whole body (including the upper body and the throwing arm) and the CG-way increases;
- Therefore: accelerate only the lower part of the body and delay the movement of the upper body relatively

These are the requirements and we must find out the individual solutions to turn it into the movement.

5. Selected results of the motion analysis

Comparison of selected parameters — activity of support leg

<table>
<thead>
<tr>
<th>Women</th>
<th>Mean/STD 55-60m/75-81m</th>
<th>Mean/STD 60-65m/81-86.50m</th>
<th>Mean/STD >85m/90+85m</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time of delivery stride (ms)</td>
<td>204±31</td>
<td>204±24</td>
<td>186±11</td>
</tr>
<tr>
<td>Angle of the hip axis at the TD BL (°)</td>
<td>109±9</td>
<td>106±12</td>
<td>101±11</td>
</tr>
<tr>
<td>Maximum of hip velocity (m/s)</td>
<td>5.82±0.4</td>
<td>5.72±0.3</td>
<td>6.24±0.4</td>
</tr>
<tr>
<td>Time of delivery stride (ms)</td>
<td>213±36</td>
<td>200±27</td>
<td>164±9</td>
</tr>
<tr>
<td>Angle of hip axis at TD BL (°)</td>
<td>112±8</td>
<td>110±11</td>
<td>94±14</td>
</tr>
<tr>
<td>Maximum of hip velocity (m/s)</td>
<td>6.81±0.5</td>
<td>6.73±0.5</td>
<td>7.26±0.2</td>
</tr>
</tbody>
</table>

Besides the differences in the CG-ways there are significant smaller angles of the hip-axis, shorter times of the duration of the delivery stride and higher hip-velocities at the top-athletes (men and women) as the result of an effective activity of the support leg.
5. Selected results of the motion analysis

Activity of the brace leg

<table>
<thead>
<tr>
<th></th>
<th>reduction of CG-velocity [m/s] 5→6</th>
<th>angle of the brace leg at touch-down [°]</th>
<th>knee-angle of the brace leg at TD [°]</th>
<th>knee-angle 0.06s after TD [°]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean/STD 55-60m</td>
<td>-1.01 ± 0.21</td>
<td>44 ± 2</td>
<td>164 ± 4</td>
<td>146 ± 12</td>
</tr>
<tr>
<td>Mean/STD 60-65m</td>
<td>-0.96 ± 0.27</td>
<td>45 ± 4</td>
<td>165 ± 5</td>
<td>150 ± 8</td>
</tr>
<tr>
<td>Mean/STD >65m</td>
<td>-1.08 ± 0.31</td>
<td>41 ± 2</td>
<td>164 ± 3</td>
<td>147 ± 7</td>
</tr>
</tbody>
</table>

As a result of the larger activity of the support leg (including the delay of the upper-body forward movement), the touch-down of the brace leg is more flat and leads to a higher reduction of CG-velocity in the first part of the main acceleration.
5. Selected results of the motion analysis

Delay of the throw:

- To enlarge the way of the javelin in the main acceleration;
- To increase the pre-tension in the part of trunk/shoulder

Throwing direction

Shoulder axis (xy-plane)

<table>
<thead>
<tr>
<th>Release speed [m/s]</th>
<th>Shoulder axis TD bl [°]</th>
<th>Elbow angle TD bl [°]</th>
<th>Javelin’s velocity TD M [m/s]</th>
<th>Javelin’s velocity TD bl (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean/STD 55-60m</td>
<td>23.8 ± 0.7</td>
<td>139 ± 14</td>
<td>117 ± 10</td>
<td>7.88 ± 0.49</td>
</tr>
<tr>
<td>Mean/STD 60-65m</td>
<td>24.1 ± 0.8</td>
<td>138 ± 11</td>
<td>123 ± 15</td>
<td>7.57 ± 0.63</td>
</tr>
<tr>
<td>Mean/STD >65,75m</td>
<td>25.5 ± 0.2</td>
<td>138 ± 14</td>
<td>116 ± 9</td>
<td>8.55 ± 0.35</td>
</tr>
</tbody>
</table>

* In relation to the release speed

Frank Lomann
Biomechanics of javelin throwing
12.11.2014

5. Selected results of the motion analysis

Delay of the throw

<table>
<thead>
<tr>
<th>Release speed [m/s]</th>
<th>Shoulder axis TD bl [°]</th>
<th>Elbow angle TD bl [°]</th>
<th>Javelin’s velocity TD M [m/s]</th>
<th>Javelin’s velocity TD bl (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean/STD 75-81m</td>
<td>27.9 ± 0.6</td>
<td>139 ± 15</td>
<td>116 ± 11</td>
<td>9.36 ± 1.13</td>
</tr>
<tr>
<td>Mean/STD 81-86,5m</td>
<td>28.8 ± 0.5</td>
<td>142 ± 12</td>
<td>117 ± 8</td>
<td>9.34 ± 1.03</td>
</tr>
<tr>
<td>Mean/STD >88m</td>
<td>30.2 ± 1.2</td>
<td>135 ± 4</td>
<td>116 ± 8</td>
<td>9.74 ± 0.24</td>
</tr>
</tbody>
</table>

No significant differences in the delay of the throw means

- The same (partly shorter) ways of the javelin lead to higher increases of velocity in the top-athletes (reason: higher maximum acceleration of the javelin during the main acceleration phase)
- More pre-tension in the trunk/shoulder as a result of the higher activity of the support leg (right hip is moved more forward)

Frank Lomann
Biomechanics of javelin throwing
12.11.2014

15
5. Selected results of the motion analysis

The maximum of the shoulder velocity as a result of the higher pre-tension

There is a very high correlation between the maximum of the shoulder velocity and the release speed at the women/female youth (left, n = 635) and at the men/male youth (right; n = 676)

It means: The maximum of the shoulder velocity (as a result of a higher pre-tension of the trunk/shoulder of the body) is the most important parameter to improve the release speed. Similar to: If you want to use the whiplash effect you must accelerate (and brake after this) the handle of the whip at first. If the throwing arm is sufficiently delayed you can produce a high velocity at the end of the whip.

Frank Lammert
Biomechanics of javelin throwing
12.11.2014

5. Selected results of the motion analysis

Generate pre-tension trunk/shoulder

A higher pre-tension in the trunk/shoulder part of the thrower is generated after an effective activity of the support leg, a large amount of reduced speed after the touch down of the brace leg and a good delay of the throw (as shown).

This appears as an high torque between hip-axis and shoulder axis.

<table>
<thead>
<tr>
<th></th>
<th>women</th>
<th>men</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean/STD 55-60m</td>
<td>30 ± 9</td>
<td>Mean/STD 75-81m</td>
</tr>
<tr>
<td>Mean/STD 60-65m</td>
<td>32 ± 14</td>
<td>Mean/STD 81-86,5m</td>
</tr>
<tr>
<td>Mean/STD >65m</td>
<td>37 ± 11</td>
<td>Mean/STD >88m</td>
</tr>
</tbody>
</table>

Top-athletes have a significant higher torque between hip and shoulder axis at the touch down of the brace leg.

Frank Lammert
Biomechanics of javelin throwing
12.11.2014
5. Selected results of the motion analysis

The pre-tension in the part shoulder/upper arm is generated after the acceleration of the throwing shoulder (and a relatively delayed throwing arm). Because of the velocity of the movement we must consider the course of the torques.

The torque between shoulder axis and upper arm (screwed) increases (red line) during dissolving the torque between hip and shoulder axis (blue line in the right figure). This is a sign for a good whiplash effect.

Example for a non sufficient pre-tension in the part of shoulder/upper arm (database)

Nearly no torque between shoulder axis and upper arm

(Shoulder and upper arm are moved forward simultaneously)
5. Selected results of the motion analysis

The acceleration of the javelin during the main acceleration phase can not be measured exactly by the motion analysis (50 Hz). We use the so called „Tensio-javelin“ at the diagnostics and in the training camps (not in competition).

→ Second presentation

5. Selected results of the motion analysis

Quality of release

<table>
<thead>
<tr>
<th></th>
<th>angle of release [°]</th>
<th>angle of attitude [°]</th>
<th>angle of yaw [°]</th>
<th>angle of attack or bias [°]</th>
<th>angle of attitude at the TD bl [°]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean/STD 55-60m</td>
<td>34.5 ± 3.9</td>
<td>41.5 ± 4.6</td>
<td>13.7 ± 4.6</td>
<td>7.0 ± 6.3</td>
<td>39.7 ± 6.4</td>
</tr>
<tr>
<td>Mean/STD 60-65m</td>
<td>34.8 ± 2.1</td>
<td>39.3 ± 3.7</td>
<td>9.0 ± 4.3</td>
<td>4.5 ± 3.0</td>
<td>37.5 ± 4.5</td>
</tr>
<tr>
<td>Mean/STD >65,75m</td>
<td>35.7 ± 2.3</td>
<td>40.1 ± 3.7</td>
<td>8.7 ± 3.1</td>
<td>4.4 ± 4.1</td>
<td>38.2 ± 3.1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>angle of release [°]</th>
<th>angle of attitude [°]</th>
<th>angle of yaw [°]</th>
<th>angle of attack or bias [°]</th>
<th>angle of attitude at the TD bl [°]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean/STD 75-81m</td>
<td>33.6 ± 2.8</td>
<td>37.1 ± 2.3</td>
<td>9.9 ± 4.1</td>
<td>3.5 ± 2.5</td>
<td>35.8±2.5</td>
</tr>
<tr>
<td>Mean/STD 81-86,5m</td>
<td>34.0 ± 2.7</td>
<td>36.9 ± 3.6</td>
<td>10.1 ± 3.9</td>
<td>2.9 ± 3.3</td>
<td>35.4±4.5</td>
</tr>
<tr>
<td>Mean/STD >88m</td>
<td>35.4 ± 2.8</td>
<td>36.6 ± 4.2</td>
<td>8.5 ± 1.9</td>
<td>1.2 ± 2.2</td>
<td>34.3±3.5</td>
</tr>
</tbody>
</table>

There are no significant differences in the quality of release between the groups (exception: women 55-60m).
Tendency: top-athletes have higher angles of release, smaller angles of attack and smaller angles of yaw;

5. Selected results of the motion analysis

Quality of release

Lateral view (xz-plane)

Objective lateral view: in the main acceleration (up to release + 0.04s) the longitudinal axis of the javelin should be one line.

Top view (xy-plane)

Objective top view: after the lateral backward movement (men more than women) the javelin should be fed into the throwing direction.

Angle of release (AR) and angle of attitude (AA) at top athletes

- AR: 38.8°
- AA: 44.7°

- AR: 34.5°
- AA: 34.6°

- AR: 39.0°
- AA: 38.9°

Comparison of the release of B. Splotkova at the WC 2009 (60.42m, left picture) and at the WR (72.28m, right picture).

WR J. Zelezny:

- AR: 34.8°
- AA 35.4°
- AY: 7.1°

A. Thorkildsen WC 2009 (89.59m)
6. Summary

Top Performances are characterized by:

- Higher CG-velocities up to the touch down of the brace leg (without or nearly without loss);
- Bigger effect of the brace leg (higher amount of reduced CG-velocity by more flat touch down of the brace leg);
- More forward movement of the right hip (base: more activity in the support leg) leads at the same delay of throw to a higher pre-tension in the trunk/shoulder part of the body;
- This is important for the higher shoulder velocity (the parameter most influencing the release speed).
- In tendency: higher angles of release, smaller angles of attack (< 3 degree) and smaller angles of yaw (< 10 degree).

The movement analysis at competitions and diagnostics (inclusive the evaluation and the hints for the training) play an important role in our training scientific support and counselling.

According to the physical abilities (besides others) are very important:

- reactive und velocity-abilities of the legs;
- to ensure an individual optimal relation between strength/tension and flexibility in the trunk- and shoulder muscles.

There are a lot of ways to throw 60m (women) or 80m (men). But there are not so many ways to reach absolute top-performances.
Many thanks for your kindly attention!

Institut für Angewandte Trainingswissenschaft
Marschnerstraße 29, 04199 Leipzig

PD Dr. Frank Lehmann
FG-Leiter WurfStaff
E-Mail: flehmann@iat.uni-leipzig.de
Tel.: + 49 341 4945 - 188
Fax: + 49 341 4945 - 400